Industrial Maintenance

Ball Screws and Linear Bearings SI Units

Course Sample

596157

Order no.: 596157 (Printed version) 603933 (Electronic version)

First Edition

Revision level: 06/2020

By the staff of Festo Didactic

© Festo Didactic Ltée/Ltd, Quebec, Canada 2018

Internet: www.festo-didactic.com e-mail: services.didactic@festo.com

Printed in Canada
All rights reserved
ISBN 978-2-89789-175-6 (Printed version)
ISBN 978-2-89789-177-0 (Electronic version)
Legal Deposit – Bibliothèque et Archives nationales du Québec, 2018
Legal Deposit – Library and Archives Canada, 2018

The purchaser shall receive a single right of use which is non-exclusive, non-time-limited and limited geographically to use at the purchaser's site/location as follows.

The purchaser shall be entitled to use the work to train his/her staff at the purchaser's site/location and shall also be entitled to use parts of the copyright material as the basis for the production of his/her own training documentation for the training of his/her staff at the purchaser's site/location with acknowledgement of source and to make copies for this purpose. In the case of schools/technical colleges, training centers, and universities, the right of use shall also include use by school and college students and trainees at the purchaser's site/location for teaching purposes.

The right of use shall in all cases exclude the right to publish the copyright material or to make this available for use on intranet, Internet, and LMS platforms and databases such as Moodle, which allow access by a wide variety of users, including those outside of the purchaser's site/location.

Entitlement to other rights relating to reproductions, copies, adaptations, translations, microfilming, and transfer to and storage and processing in electronic systems, no matter whether in whole or in part, shall require the prior consent of Festo Didactic.

Information in this document is subject to change without notice and does not represent a commitment on the part of Festo Didactic. The Festo materials described in this document are furnished under a license agreement or a nondisclosure agreement.

Festo Didactic recognizes product names as trademarks or registered trademarks of their respective holders.

All other trademarks are the property of their respective owners. Other trademarks and trade names may be used in this document to refer to either the entity claiming the marks and names or their products. Festo Didactic disclaims any proprietary interest in trademarks and trade names other than its own.

Table of Contents

General Safety Sy	mbols and Procedures	3
Preface		7
About This Course	.	9
To the Instructor		.11
Exercise 1 - Linea	r Bearings	. 13
	Ball screw and linear bearing applications	.13
	Introduction to linear bearings	. 15
	Maintenance and lubrication of linear bearings	.16
	Competencies, required equipment, and safety	
	Safety procedures	
	Lockout/Tagout procedure	17
	Setup	
	Installing the linear ball bearings in the	
	guides	.18
	Installing the guides on the shafts	.21
	Removing the linear ball bearings from the	
	guides	.22
	Ending the exercise	.25
Exercise 2 - Ball N	luts and Ball Screws	.27
	Maintenance and lubrication of ball screws	
	and ball nuts	.30
	Competencies, required equipment, and safety	.31
	Safety procedures	31
	Lockout/Tagout procedure	32
	Preliminary procedures for this exercise	.32
	Installing the ball screw	.32
	Sliding the ball nut on the ball screw	.34
	Sliding the ball nut on the arbor	.35
	Disassembling the ball nut	.36
	Installing the empty ball nut on the ball	
	screw	.38
	Disassembling the bearing housing	.40
	Assembling the bearing housing	.42
	Ending the exercise	45
Exercise 3 - Backl	ash	.47
	Competencies, required equipment, and safety	
	Safety procedures	
	Lockout/Tagout procedure	
	Preliminary procedures for this exercise	
	Installing the linear slide assembly	
	Installing the dial indicator	
	Measuring the backlash of the system	
	Ending the exercise	

Exercise 4 - Pitch, Lead, Start, and Speed	57
Relationship between pitch, lead, start,	
speed	57
Critical speed	58
Competencies, required equipment, and safety	58
Safety procedures	59
Lockout/Tagout procedure	59
Preliminary procedures for this exercise	59
Determining the ball screw start, pitch,	
and lead	60
Ball screw start	60
Ball screw pitch	60
Ball screw lead	61
Linear guide assembly speed	61
Ending the exercise	63
Appendix A - Equipment Utilization Chart	65
Appendix B - Lockout/Tagout Procedure	67
Appendix C - Post Test	69
Appendix D - Unit Conversion Table	73

General Safety Symbols and Procedures

The following table lists the safety and common symbols that may be used in this course and on the equipment. Before performing manipulations with the equipment, you should read all sections regarding safety in the Safety Instructions and Commissioning manual accompanying the equipment.

If applicable, following subsections give general procedures related to the tasks you will be asked to perform in this course. Additional safety procedures are given before any task requiring specific safety precautions.

Symbol	Description
▲ DANGER	DANGER indicates a hazard with a high level of risk, which, if not avoided, will result in death or serious injury.
▲ WARNING	WARNING indicates a hazard with a medium level of risk, which, if not avoided, could result in death or serious injury.
▲ CAUTION	CAUTION indicates a hazard with a low level of risk, which, if not avoided, could result in minor or moderate injury.
CAUTION	CAUTION used without the "Caution, risk of danger" sign, indicates a hazard with a potentially hazardous situation, which, if not avoided, may result in property damage.
<u> </u>	Caution, risk of danger. Consult the relevant user documentation.
4	Caution, risk of electric shock.
	Caution, lifting hazard.
	Caution, hot surface.
	Caution, risk of fire.

Symbol	Description
	Caution, risk of explosion.
	Caution, belt drive entanglement hazard.
	Caution, chain drive entanglement hazard.
	Caution, gear entanglement hazard.
	Caution, hand crushing hazard.
	Static sensitive contents. Observe precautions for handling electrostatic discharge sensitive devices.
	Notice, non-ionizing radiation.
<u> </u>	Consult the relevant user documentation.
	Radio Equipment Directive (RED) geographical restrictions – consult the relevant user documentation.
===	Direct current.
\sim	Alternating current.

Symbol	Description
$\overline{\sim}$	Both direct and alternating current.
3∼	Three-phase alternating current.
<u></u>	Earth (ground) terminal.
	Protective conductor terminal.
—	Frame or chassis terminal.
↓	Equipotentiality.
	On (supply).
0	Off (supply).
	Equipment protected throughout by double insulation or reinforced insulation.
Д	In position of a bi-stable push control.
	Out position of a bi-stable push control.

Preface

The Mechanical Drives Training System covers the installation, use, maintenance, and troubleshooting of mechanical drives.

The curriculum is divided into levels and covers the following topics:

- Introduction to mechanical drive systems
- Belt drives
- Chain drives
- Gear drives
- Shaft alignment and couplings
- Bearings and seals
- Ball screws and linear bearings
- Clutches and brakes
- Vibration metering
- Vibration analysis
- Notions of lubrication

The following figure shows the available course material for the Mechanical Drives Training System.

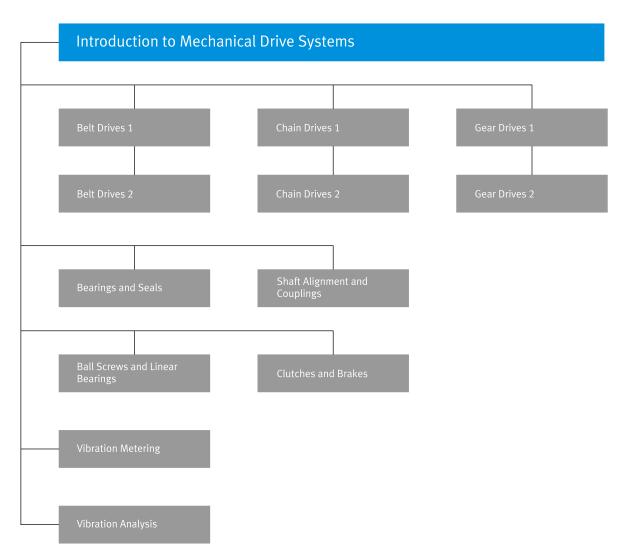


Figure 1: Mechanical Drives Training System course material.

Tips, feedback, and suggestions

We invite readers to send us their tips, feedback, and suggestions for improving the course.

Please send these to:

services.didactic@festo.com

The authors and Festo Didactic look forward to your comments.

About This Course

Course structure

The topics covered in this course are presented in the form of exercises. Each exercise contains a theory section and a procedure section.

- The theory section introduces the covered topics for the current exercise. However, to obtain detailed information about the topic, you should refer to a textbook or ask your instructor to guide your learning process.
- The procedure section includes a list of targeted competencies, a list of equipment, safety procedures, and the steps required to acquire the competencies.

The exercises follow a logical sequence that allows you to assimilate the concepts efficiently. The exercises should be performed one after another since the content of a given exercise builds on the knowledge acquired in the previous one.

Course objectives

When you have completed this course, you will be familiar with ball screws and linear ball bearings. You will know how to install them and how they are used in linear guide assemblies. You will have learned what backlash is, in regard to ball screws, and how to minimize or eliminate it. You will have studied the pitch, lead, and start of a ball screw, and know how to determine and calculate these parameters. You will be familiar with the relationship between the pitch, lead, and start of a ball screw, as well as their effects on the ball screw speed. You will have studied the main elements required for the lubrication and maintenance of linear bearings and ball screws.

Prerequisite

As a prerequisite to this course, you should have performed the course Introduction to Mechanical Drive Systems.

To the Instructor

You will find in this instructor version of the course all the elements included in the student version together with the answers to all questions, results of measurements, graphs, explanations, suggestions, and, in some cases, instructions to help you guide the students through their learning process. All the information that applies to the instructor is placed between markers and appears in red.

Accuracy of measurements

The numerical results of the hands-on exercises may differ from one student to the next. For this reason, the results and answers given in this course should be considered as a guide. Students who correctly perform the exercises should expect to demonstrate the principles involved and to make observations and measurements similar to those given as answers.

Before performing manipulations

Before a student performs manipulations, ensure that the equipment is in good condition and does not represent any risk when used.

When a student must complete a setup that is already partially mounted, ensure that the setup corresponds to the description for the current manipulations.

When the manipulations are performed in teams, ensure that each student has and installs a padlock when performing the Lockout/Tagout procedure.

Sample Extracted from Job Sheets - Instructor

Ball Nuts and Ball Screws

Ball screws are force and motion transfer devices that convert rotary motion to linear motion, or torque to thrust, and vice versa. They consist of a screw with a precision helical groove (the inner race), a nut with an internal groove (the outer race), and precision steel balls that circulate in the grooves between the screw and nut. Figure 16 shows a typical ball screw and nut.

Figure 16: Ball screw and nut.

The balls are diverted from one end of the nut and carried through a return circuit to the opposite end, as shown in Figure 17. The return circuit is typically a pipe outside the ball nut, but can also be a deflector or a through hole in the nut. Some free space is present in the ball circuit to prevent the balls from skidding. During operation, either the screw or the nut rotates, while the other component moves linearly.

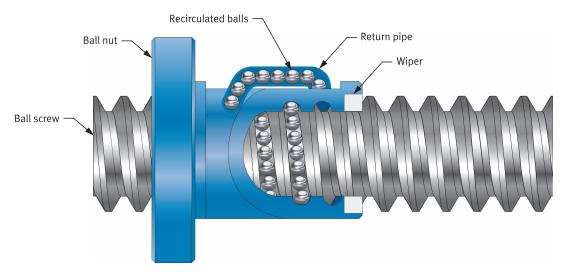


Figure 17: Side view of a ball screw.

In a ball screw and nut combination, the balls between the nut and the screw roll with very little friction. In a conventional nut and machine screw combination, the friction is much higher since the threaded faces slide on one another. Because of this, ball screw and nut combinations have a very high efficiency in comparison to other mechanisms that convert rotary motion to linear motion.

Ball screws are designed for axial loads, also called thrust loads. They can tolerate both compression and tensile axial loads, as shown in (a) and (b) of Figure 18. However, ball screws are not designed for radial loads, or side loads, as shown in (c). Applying radial loads on a ball screw could significantly reduce its life.

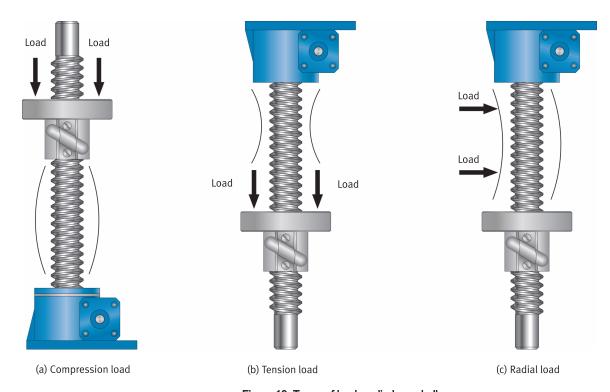


Figure 18: Types of load applied on a ball screw.

When installing a ball nut with a single return pipe, it is recommended to make sure the return pipe faces up or, at least, not down (laterally is acceptable), as shown in (a) of Figure 19. However, when installing a ball nut with two return pipes, it is recommended that both return pipes face laterally, ensuring that no return pipe faces down, as shown in (b). Down-facing return pipes are usually avoided since gravity could prevent the proper return of the balls in the ball nut.

(b) Non recommended return pipe orientation

Figure 19: Orientation of return pipes during ball nut installation.

For storage purposes, ball nuts are usually mounted on an arbor, and maintained in place using retainers, as shown in Figure 20.

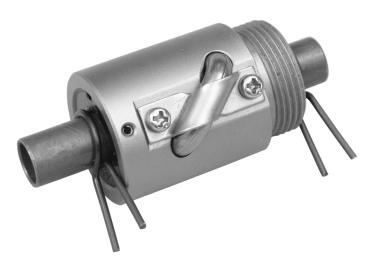


Figure 20: Ball nut mounted on an arbor for storage.

Figure 21: Linear bearings and ball screws are commonly used for horizontal and vertical movement in CNC mills.

Maintenance and lubrication of ball screws and ball nuts

As for linear bearings, the service life of a ball screw and its ball nut corresponds to the length of time the ball screw and nut remain operational under given operating conditions. The length of the service life depends on a multitude of factors, such as material fatigue due to the load, wear of the ball nut's recirculation system, wear of the ball screw's threads, corrosion, and lubrication intervals.

Signs indicating the near failure or failure of the ball screw and nut include:

- Excessive wear
- Pitting
- Gouges
- Corrosion
- Spalling
- Brinelling

The most important part of ball screw and nut maintenance is their lubrication and relubrication. Both oil and grease are commonly used. Oil lubrication is typically more complex and requires a pump and a filtering system. Grease, on the other hand, is normally not recommended for applications operating at low temperatures or at high speed. High-speed operation may also throw off

lubricants, requiring a more adequate lubricant spread or more frequent lubrication.

The lubrication of a ball screw should occur at intervals regular enough to maintain a film of lubricant on the screw at all times. This ensures the frictionless and efficient operation of the ball screw. As for the ball nut, the balls can be lubricated during their insertion in the ball nut, or through the nut's grease fitting, if available.

Before lubricating a ball screw or ball nut, it is always recommended to consult the manufacturer's documentation for any additional advice.

Competencies, required equipment, and safety

Learning outcomes

- Be able to install a ball screw.
- Be able to slide a ball nut on a ball screw and on an arbor.
- Be able to disassemble a ball nut.
- Be able to assemble a ball nut on a ball screw.
- Be able to disassemble and reassemble a bearing housing.

The results given in this exercise are typical measurements. The actual results obtained by students vary.

Refer to the Equipment Utilization Chart in Appendix A to obtain the list of equipment required for this exercise.

Safety procedures

Refore	nerforming	this procedure	make sure to	complete the	following	checklis
Deloie	: Dellollillid	1 11113 DIOCEGUIE	. IIIake sule lu	COITIDIELE LITE	IOHOWITIG	CHECKIISI

☐ You are wearing safety glasses, safety shoes, and safety gloves.
☐ You are not wearing anything that might get caught, such as a tie jewelry, or loose clothing.
☐ Your sleeves are rolled up.
☐ If your hair is long, it is tied out of the way.
☐ The working area is clean and free of spilled oil or refrigerant.

☐ The floor is not wet.

© Festo Didactic 31

☐ The working area is well ventilated.

☐ The risks of tripping hazards on the floor due to wires, cord lines, cables or other such equipment are minimized.

Lockout/Tagout procedure

1. Before performing the following manipulations, perform the Lockout/Tagout procedure described in Appendix B.

Preliminary procedures for this exercise

Before starting this exercise, make sure you have performed the following procedures from Exercise 1:

- Setup
- Installing the linear ball bearings in the guides

Figure 22 shows the current equipment setup after the above procedures.

Figure 22: Current equipment setup.

Installing the ball screw

2. Place a 29 cm riser on the two extrusions, about 10 cm from the tip of the shafts, as shown in Figure 23. Do not screw this riser in place. It is only used to support the ball screw and prevent any bending damage while you perform this exercise.



Figure 23: Ball screw with the supporting 29 cm riser.

- 3. Using the 3 mm hexagonal T-handle key, unscrew the four screws from the lateral face of the front ball screw support. Set them aside for the moment.
- 4. Take the ball screw from the Ball Screws and Linear Bearings 2 panel. Insert it from the right-hand side through the hole of the front ball screw support. Make sure the ball screw end without flange enters the support first. Push the ball screw as far as it can go and lay it on the 29 cm riser, as shown in the preceding figure.
- 5. Align the empty screw holes of the ball screw flange with the screw holes in the front support. Using the 3 mm hexagonal T-handle key and the screws you set aside, screw the ball screw in place on the front support.
- 6. Take the handwheel from the Ball Screws and Linear Bearings 1 panel. Install it on the flange end of the ball screw, as shown in Figure 24. Push the handwheel as far as it can go. Using the 3 mm hexagonal T-handle key, tighten the handwheel setscrew against the flat surface of the ball screw tip.

Figure 24: Installing the handwheel.

Sliding the ball nut on the ball screw

While performing the steps in this section, make sure that either the arbor or the ball screw is inserted in the ball nut at all times. Otherwise, the balls inside the nut will slide out. Inserting the balls back in the nut is a time-consuming process.

- 7. On the ball nut, remove the locking pin from the arbor on the threaded side of the nut. Do not remove the arbor from the nut.
- 8. Press the tip without locking pin of the arbor on the free tip of the ball screw, as shown in part (a) of Figure 25. Make sure the tip of the ball screw inserts all the way inside the arbor.

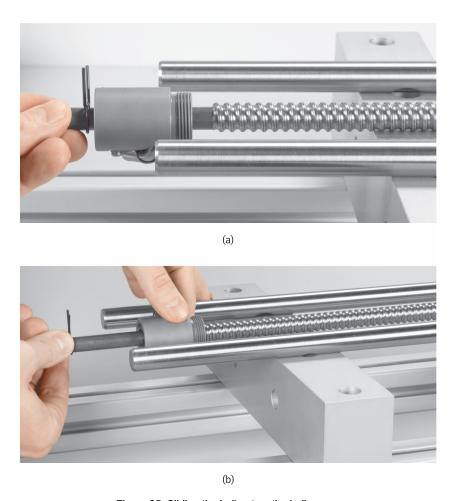


Figure 25: Sliding the ball nut on the ball screw.

9. Slide the nut on the ball screw. Screw the nut clockwise on the ball screw until no part of the nut protrudes on the arbor, as shown in part (b) of Figure 25. The nut should screw on the ball screw with little resistance.

Sliding the ball nut on the arbor

While performing the steps in this section, make sure that either the arbor or the ball screw is inserted in the ball nut at all times. Otherwise, the balls inside the nut will slide out. Inserting the balls back in the nut is a time-consuming process.

10. Press the tip without locking pin of the arbor on the free tip of the ball screw, as shown in Figure 26. Make sure the tip of the ball screw inserts all the way inside the arbor.

Figure 26: Sliding the ball nut on the arbor.

- **11.** Screw the nut counterclockwise on the ball screw until the nut slides completely on the arbor, as shown in Figure 26.
- 12. Install the removed locking pin on the side of the arbor without locking pin.

Disassembling the ball nut

- **13.** Place the ball nut in a large flat tray in order to prevent the loss of balls during disassembly.
- **14.** Using the cruciform screwdriver, unscrew both screws of the return pipe holder on the ball nut, as shown in Figure 27. Remove the holder and set it aside in the tray for the moment.

Figure 27: Unscrewing the screws of the return pipe holder on the ball nut.

15. Remove the return pipe with your fingers, as shown in Figure 28. Separate both halves of the return pipe. Remove all balls inside it. Set the return pipe and balls aside in the tray for the moment.

Figure 28: Removing the return pipe.

16. Remove a locking pin from the arbor on any side of the ball nut. Then, remove the arbor. This allows the balls in the ball nut to be removed, as shown in Figure 29.

Using a pen, screwdriver, hexagonal key, or any small tool, push all balls off the ball nut. Set the balls aside in the tray for the moment.

There should be 49 balls in the ball nut. Remove any extra balls or add balls until there are 49 balls.

Figure 29: Removing the balls from the ball nut.

Installing the empty ball nut on the ball screw

17. Lay one half of the return pipe on a work surface. Then, place 11 balls on its interior surface, as shown in Figure 30.

It may help the balls adhere to the return pipe if you slightly grease the interior of the pipe beforehand.

Figure 30: Filling one half of the return pipe with balls.

- 18. Slide the nut on the ball screw, with the threaded side going first. Screw the nut clockwise on the ball screw until it is about 15 cm from the tip. Make sure the ball holes face up.
- 19. One by one, insert all remaining balls (there should be 38) in the ball nut. Insert the balls in the slot closest to the free end of the ball screw, as shown in Figure 31. This is a delicate operation. In order to not have to restart from the beginning, do the following:

- Insert the balls one by one, making sure the balls land as directly as possible in the bottom hole of the slot.
- Do not let any ball enter the lateral hole of the slot. This hole leads out of the circuit delimited by the return pipe. During movement, the ball would block against the thread stop at the end of the ball nut, locking it in place and damaging the threads.
- After each ball lands in the slot, slightly rotate the ball screw in the counterclockwise direction, just enough to make way for another ball.
- Do not rotate the ball screw counterclockwise too much, since this
 would create a gap between the balls. It would cause the balls to take
 too much space in the circuit and spill out of the other slot of the nut
 or, worse, continue out of the circuit delimited by the return pipe.
- You can use a small tool, such as an arbor lock pin, to push against the balls already inserted in the slot. This could help reduce the gap between the balls. Do not push too much.

Figure 31: Inserting the balls in the ball nut.

20. Place the other half of the return pipe on the half containing the balls.

Insert the return pipe inside the ball holes of the ball nut, as shown in Figure 32. While doing so, make sure to maintain the return pipe almost horizontal to prevent the balls from sliding off of the return pipe.

Figure 32: Inserting the return pipe inside the ball holes of the ball nut.

- 21. Place the return pipe holder on the pipe. Using the cruciform screwdriver, screw both screws of the holder on the ball nut.
- 22. Slowly rotate the ball nut back and forth on the ball screw.

If the ball nut does not rotate perfectly around the ball screw, it is recommended to remove the ball nut (taking care not to lose balls), place the ball nut in the flat tray, and return to Step 13 of this exercise.

NOTICE

If you encounter resistance at any point during the rotation of the ball nut around the ball screw, stop immediately. A ball is probably out of the circuit delimited by the return pipe. Trying to rotate further could damage the ball nut or screw.

- 23. The ball nut is now installed on the ball screw. Ask the instructor to check your work.
- **24.** Perform the Sliding the ball nut on the arbor section in this exercise to remove the ball nut from the ball screw.

Disassembling the bearing housing

25. Take the HN0 wrench from the toolbox. While holding the handwheel with your hand, use the HN0 wrench to rotate the lock nut beside the ball screw flange counterclockwise, as shown in Figure 33. Rotate the lock nut as much as possible.

Figure 33: Removing the lock nut using the HN0 wrench.

- **26.** Using the 3 mm hexagonal T-handle key, release the handwheel setscrew. Remove the handwheel and set it aside for the moment.
- 27. Continue rotating the lock nut counterclockwise until you can remove it from the ball screw with your hands. Set the lock nut aside for the moment.
- 28. Remove the spacer from the center of the flange with your fingers, as shown in Figure 34. Set it aside for the moment.

Figure 34: Removing the spacer from the center of the flange.

29. Remove the cover of the flange by unscrewing the four screws using the appropriate hexagonal key. Remove the flange cover and set it aside for the moment.

The screws holding the flange cover on the flange base have 2.5 mm hexagonal screw holes, while the screws holding the ball screw on the front support have 3 mm hexagonal screw holes. Do not mistake one for the other.

30. Remove the two angular contact ball bearings. To do so, push on the ball screw so that it slides toward the right, as shown in Figure 35. This pushes the two angular contact ball bearings out from the flange base. Remove the bearings from the ball screw and set them aside for the moment.

Figure 35: Removing the two angular contact bearings.

31. The bearing housing is now fully disassembled. Ask the instructor to check your work.

Assembling the bearing housing

32. Observe the angular contact ball bearings. Notice that both sides of each bearing are not identical. On one side, the inner shoulder of the bearings is wide, while on the other side, it is narrow, as shown in Figure 36. The orientation of each bearing is important, as it can only support axial loads from one side. Therefore, to support axial loads from both sides, the two angular contact ball bearings must be mounted opposite to each other.

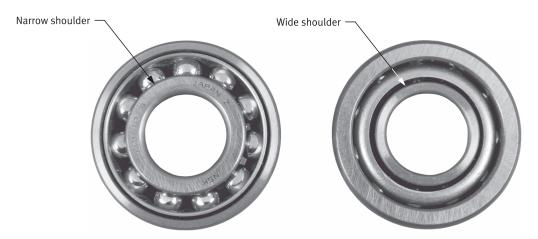


Figure 36: Angular contact ball bearings.

33. Install the angular contact ball bearings on the flange end of the ball screw in a face-to-face configuration (i.e., with their narrow shoulders facing each other). Push the bearings all the way inside the flange base, as shown in Figure 37.

Figure 37: Inserting the angular contact ball bearings in the flange base.

34. Locate the flange cover and its corresponding screws. Install the flange cover on the flange base. Make sure the tapered screw holes of the flange cover align with the empty screw holes of the flange base. Screw the four screws in the screw holes.

The screws holding the flange cover on the flange base have 2.5 mm hexagonal screw holes, while the screws holding the ball screw on the front support have 3 mm hexagonal screw holes. Do not mistake one for the other.

35. Locate the spacer. Slide it on the flange end of the ball screw and insert it completely inside the flange cover, as shown in Figure 38.

Figure 38: Inserting the spacer inside the flange cover.

- **36.** Locate the lock nut. Slide it on the flange end of the ball screw and screw it as much as possible with your hands.
- 37. Locate the handwheel. Install it on the flange end of the ball screw, as shown in Figure 39. Push the handwheel as far as it can go. Using the 3 mm hexagonal T-handle key, tighten the handwheel setscrew against the flat surface of the ball screw tip.

Figure 39: Installing the handwheel.

- **38.** Take the HN0 wrench from the toolbox. While holding the handwheel with your hand, use the HN0 wrench to rotate the lock nut clockwise. Tighten the lock nut as much as possible on the spacer.
- **39.** The bearing housing is now fully reassembled. Ask the instructor to check your work.

Ending the exercise

40. Part of the equipment is currently installed to perform the next exercise. If you wish to do so, proceed directly to the next exercise.

If not, disassemble the setup and return the components to the storage location.